4,936 research outputs found

    Wisent: Robust Downstream Communication and Storage for Computational RFIDs

    Full text link
    Computational RFID (CRFID) devices are emerging platforms that can enable perennial computation and sensing by eliminating the need for batteries. Although much research has been devoted to improving upstream (CRFID to RFID reader) communication rates, the opposite direction has so far been neglected, presumably due to the difficulty of guaranteeing fast and error-free transfer amidst frequent power interruptions of CRFID. With growing interest in the market where CRFIDs are forever-embedded in many structures, it is necessary for this void to be filled. Therefore, we propose Wisent-a robust downstream communication protocol for CRFIDs that operates on top of the legacy UHF RFID communication protocol: EPC C1G2. The novelty of Wisent is its ability to adaptively change the frame length sent by the reader, based on the length throttling mechanism, to minimize the transfer times at varying channel conditions. We present an implementation of Wisent for the WISP 5 and an off-the-shelf RFID reader. Our experiments show that Wisent allows transfer up to 16 times faster than a baseline, non-adaptive shortest frame case, i.e. single word length, at sub-meter distance. As a case study, we show how Wisent enables wireless CRFID reprogramming, demonstrating the world's first wirelessly reprogrammable (software defined) CRFID.Comment: Accepted for Publication to IEEE INFOCOM 201

    Low scatter and ultra-low reflectivity measured in a fused silica window

    Get PDF
    We investigate the reflectivity and optical scattering characteristics at 1064\,nm of an antireflection coated fused silica window of the type being used in the Advanced LIGO gravitational-wave detectors. Reflectivity is measured in the ultra-low range of 5-10\,ppm (by vendor) and 14-30\,ppm (by us). Using an angle-resolved scatterometer we measure the sample's Bidirectional Scattering Distribution Function (BSDF) and use this to estimate its transmitted and reflected scatter at roughly 20-40\,ppm and 1\,ppm, respectively, over the range of angles measured. We further inspect the sample's low backscatter using an imaging scatterometer, measuring an angle resolved BSDF below 10−610^{-6} sr−1^{-1} for large angles (10∘^\circ--80∘^\circ from incidence in the plane of the beam). We use the associated images to (partially) isolate scatter from different regions of the sample and find that scattering from the bulk fused silica is on par with backscatter from the antireflection coated optical surfaces. To confirm that the bulk scattering is caused by Rayleigh scattering, we perform a separate experiment, measuring the scattering intensity versus input polarization angle. We estimate that 0.9--1.3\,ppm of the backscatter can be accounted for by Rayleigh scattering of the bulk fused silica. These results indicate that modern antireflection coatings have low enough scatter to not limit the total backscattering of thick fused silica optics.Comment: 9 pages, 10 figure

    Optical scatter of quantum noise filter cavity optics

    Full text link
    Optical cavities to filter squeezed light for quantum noise reduction require optics with very low scattering losses. We report on measured light scattering from two super-polished fused silica optics before and after applying highly-reflective ion-beam sputtered dielectric coatings. We used an imaging scatterometer that illuminates the sample with a linearly polarized 1064 nm wavelength laser at a fixed angle of incidence and records images of back scatter for azimuthal angles in the plane of the laser beam. We extract from these images the bidirectional reflectance distribution function (BRDF) of the optics with and without coating and estimate their integrated scatter. We find that application of these coatings led to a more than 50% increase of the integrated wide-angle scatter, to 5.00+/-0.30 and 3.38+/-0.20 ppm for the two coated samples. In addition, the BRDF function of the coated optics takes on a pattern of maxima versus azimuthal angle. We compare with a scattering model to show that this is qualitatively consistent with roughness scattering from the coating layer interfaces. These results are part of a broader study to understand and minimize optical loss in quantum noise filter cavities for interferometric gravitational-wave detectors. The scattering measured for these samples is acceptable for the 16 m long filter cavities envisioned for the Laser Interferometer Gravitational-wave Observatory (LIGO), though reducing the loss further would improve LIGO's quantum-noise limited performance.Comment: 10 pages, 3 figure

    Interactive singulation of objects from a pile

    Get PDF
    Abstract—Interaction with unstructured groups of objects allows a robot to discover and manipulate novel items in cluttered environments. We present a framework for interactive singulation of individual items from a pile. The proposed framework provides an overall approach for tasks involving operation on multiple objects, such as counting, arranging, or sorting items in a pile. A perception module combined with pushing actions accumulates evidence of singulated items over multiple pile interactions. A decision module scores the likelihood of a single-item pile to a multiple-item pile based on the magnitude of motion and matching determined from the perception module. Three variations of the singulation framework were evaluated on a physical robot for an arrangement task. The proposed interactive singulation method with adaptive pushing reduces the grasp errors on non-singulated piles compared to alternative methods without the perception and decision modules. This work contributes the general pile interaction framework, a specific method for integrating perception and action plans with grasp decisions, and an experimental evaluation of the cost trade-offs for different singulation methods. I
    • …
    corecore